

## Maximizing profit

Consider a market participant firm that operates under perfect competition. This firm sells its output at a constant market price  $p$  greater than zero, and incurs a cost  $w$  greater than zero for each unit of the single input it utilizes. The firm's production function is denoted by  $f(x)$ , with  $x$  being the amount of the variable input used. We aim to determine the input level  $x$  that will maximize the firm's profit. The production function is given by  $f(x) = x^2$ .

1. Write the profit function and explain if it is concave.
2. Find the critical points (if there are any).

## Solution

1. The profit  $\Pi$  of a competitive firm as a function of input  $x$  can be modeled by the expression

$$\Pi(x) = px^2 - wx$$

This quadratic function does not display concavity as its second derivative,  $2p$  is positive for all values of  $x$ . The profit function is convex.

2. For profit maximization, if we set the derivative of the profit function to zero, yielding  $\Pi'(x) = 2px - w = 0$ , which implies  $x = \frac{w}{2p}$ . Evaluating the profit function at this point gives us  $p\left(\frac{w}{2p}\right)^2 - w\left(\frac{w}{2p}\right)$ , resulting in a negative value.

Given the convex nature of the profit function, it is evident that with an increase in  $x$ , the profit function escalates without bound, signifying that it does not attain a maximal value.